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Abstract—This paper investigates analytically non-Fourier effects in a finite slab using the hyperbolic heat
conduction model. The results for pulsed surface heat flux conditions are compared with those obtained
from the standard parabolic heat conduction equation. Detailed analysis of transition between the ‘para-
bolic’ and ‘hyperbolic’ behaviour of the temperature response of the pulse shows, that for L/\/ (at) 2 25
non-Fourier effects are negligible and the temperature response of the pulse which occurs at x = 0, gained
in x = L, is practically equal to that developed from the parabolic heat conduction equation. Solutions
given in this paper have a clear physical interpretation as travelling thermal waves, which enable solutions
to this problem for a semi-infinite medium to be written. Series solutions presented here are in convenient
form for numerical convergence, and enable one to make a deep analysis of early times of a transient stage
in a medium, which plays an important role in the investigation of thermal stresses.

INTRODUCTION

EXPERIMENTS in search of second sound [1-6] clearly
demonstrated that for situations involving very short
times and temperatures near absolute zero Fourier’s
law

q= —kgradT (€))

which states that the heat flux q is proportional to
the temperature gradient grad 7" (k is the thermal
conductivity), become invalid, and the classical para-
bolic heat conduction equation

oT
ot
cannot be adequately used for the calculation of the
desired temperature distribution in a sample after a
pulse.
A modified ‘non-Fourier’ heat flux law, originally
proposed by Maxwell {7] (and later by many other
investigators [8-13]), is

= aAT o))

i
vy q= —kgrad1 3)
ot
where 7 is the thermal relaxation time When equation
(3) is incorporated into the continuity equation

aT
divg = —pc~ )

where p is the mass density and ¢ the specific heat
capacity, the hyperbolic heat conduction equation
(HHCE) is obtained in the form

T T

where a = k/pc is the thermal diffusivity.
Analytical solutions of HHCE are available in the
literature only for some specific cases

The temperature distribution due to a step change
in temperature at the boundary of a semi-infinite
medium, was given in refs. [14-16]. Solution of this
problem due to a step change of heat flux at the
boundary surface is given in ref. [17]. A theoretical
prediction of the heat propagation in a semi-infinite
medium containing distributed volumetric energy
sources is given in ref. [18].

When a region of finite thickness is considered, the
analysis of the propagation of a thermal disturbance
in a medium becomes an intricate matter, since the
released energy travels as a wave while dissipating its
energy and reflecting off the boundaries. Taitel [19]
presents a solution for a thin layer subject to a step
change of temperature on both its sides, while the
same problem, but with a step change of temperature
on one side, is solved in ref. [20].

Solutions for the temperature and heat flux, as pre-
dicted by the HHCE in a region in finite thickness,
subjected to a volumetric energy source, are given in
ref. [21].

For situations in which analytical solutions are
difficult to obtain (e.g. in the case with surface radi-
ation, or temperature-dependent thermal conduc-
tivity), HHCE is solved numerically in refs. [22-24].

The existing analytical solutions of HHCE for a
finite medium [25] are, however not in convenient
form for numerical convergence, and require some
lengthy manipulations, particularly for small values
of time, which are, from the point of view of the
experimenter, the most interesting.

The objective of this investigation is to develop a
solution for HHCE in the finite slab exposed to a
pulsed surface heat flux, which is rapidly convergent
for small values of time. We will discuss in detail the
transition between the ‘parabolic’ and ‘hyperbolic’
behaviour of the temperature response of the pulse,
and we will give the criteria for the onset of non-
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k thermal conductivity

L thickness of slab

p Laplace variable

q heat flux vector

o amount of energy of a pulse per unit

area
t time
v integral variable
t* time needed for appearance of the front
of temperature disturbance in the
plane x = L

NOMENCLATURE
a thermal diffusivity 1, duration of the heat pulse
¢ specific heat capacity of slab V dimensionless temperature
f(t) time distribution of heat flux at x = 0 Ve Vernotte number
Fo Fourier number, at/L* x spatial variable
Fo, dimensionless duration of the pulse, X dimensionless spatial variable, x/L
at,/L? T(x,t) temperature in space—time point x, z.

Greek symbols
A difference (Laplace operator)
o mass density
T thermal relaxation time.
Subscripts
b back side
f front side.

Fourier effects in a medium. Analytical solutions
given in this paper explain a structure of the tem-
perature response on a pulse experimentally gained
by Ackerman er al. [2].

ANALYSIS

Consider a slab of thickness L, initially at the equi-
librium temperature T(x,0) = 0, with constant ther-
mal properties and insulated boundaries. At time
¢t = 0 the external surface at x = 0 is suddenly exposed
to a time-dependent heat flux with prescribed rate
f(#) per unit time.

Instantaneous pulse
First, we develop a solution of one-dimensional
HHCE
o'T 6T T
-+ —=a= Lx<L,t=0 6
Tat2+8t a5 0<x<L ©)

subject to the initial conditions

T(x,0) =0 )
oT
2 0 =0 (8)
4(x,0) =0 ®)

and the boundary conditions

aT g
q(0,1) = —"‘5; {0, t)mrb—t(O, =04 (10)

oT
F (L=0 or g(Ln)=0. (11)

Here Q@ is a constant and 6(t) is the Dirac delta
function. Conditions (10) and (11) represent the

impulse surface heat source and insulated boundary,
respectively.

In our previous paper [26] we presented a solution
of HHCE (6} subjected to initial conditions (7)—(9)
and boundary conditions

oT
ké}x:() = —04(2) (12)
oT
., =" ~

which represent the insulated surface at x = L, and
the prescribed heat flux at x =0

— Q tiad :

9(0.0) =~ u(1) (14)

where u(z) is the Heaviside unit step function.

Expression (14) follows from the one-dimensional

equation (3), in which the right-hand side is given by

equation (12).

If we apply the Laplace transformation to equation

(6) by taking into account initial conditions (7)-(9),
then we obtain the following subsidiary equation :

y

T -
—plpt+DT=0, 0<x<L

with conditions
aT Q
—&;-—;(H—pt}, x=0 (16)
aT
— =0, x=1L Qa7
dx

where

T= f T(x,r)e " dt
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Non-Fourier propagation of heat pulses in finite medium

is the Laplace transform of temperature 7(x, ).

The solution of equation (15) with respect to equa-
tion (16), and equation (17) is
Q@ (+p7)

T(xap) =717

kh (1= 20T (8

where

h=/(tp(p+1/1)/a).

Since we seek a solution of equation (6) for short
times, we expand the term (1 —e~2"“)~" into a series
for a large h. Here the right-hand side of equation
(18) has the form

- &1
T =204 3

X {e—h(2mL+x) +e—h(2mL+ 2L~x)}.

(19)

Using a table of transforms [27] we can find the inverse
transformation of equation (19)

OH(x, 1)

T(x,t) = H(x,1)+1 3

(20)

where

Q a t
- (ol 5)
o)
qu:t— \/ (3>(2mL+x)]
a
1 ) 5T
+1, (—2—;\/<t —(2mL+2L—x) Z))
xu[z—\/G)(szHL—x)]} Q1)

and 7y(z) is the modified Bessel function of the first
kind of order zero.

The first term in equation (21) describes the flow of
thermal waves from the plane x = 0 to the right, and
the second one describes the waves reflected from the
plane x = L moving to the left.

Extended pulse

Now suppose that the instantaneous sources occur
att = t’, i.e. we shift the time origin to —¢’ by writing
t— ¢’ in place of ¢. Suppose also that there is a sequence
of instantaneous sources Q/pc in the interval 0 to ¢,.
Let this time sequence be of magnitude proportional
to f(¢'), where f(¢’) is a non-dimensional function.
To obtain the temperature distribution at time ¢, we
integrate from 0 to ¢ when ¢ < ¢, or from 0 to ¢, when
t > t,. In the latter case we have

OH(x,1— z')] dr

T(x,1) = Jllf(t’) [H(x,t—t’)—r 2

22
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Semi-infinite medium

From the foregoing simple physical meaning of the
individual terms of equation (21), we can easily deter-
mine the solution of HHCE (6) subject to conditions
(7)-(10) for the extended pulses in a semi-infinite
medium x > 0. For this purpose it is sufficient to omit
all the terms which represent the waves reflected from
both boundary planes, and to take only the first term
with m = 0, which represents the wave moving from
the plane x = 0 to the right. Here function H takes
the form

o= () (3)
RENGEHIN NG

Non-dimensional formulae

If we want to express the temperature in a medium
as a fraction of the steady-state temperature after
pulse, i.e.

[

pcL ), f@)de
then equation (22) has the form
Vix,1) =

f'f(t’)[H(x,z_;f)_faH_();#]dt,

J " raydr

(23)

and the dimensionless form of H(x, t) is
L t

H(x,t) = mexp (— 2—1)

X mi::o {Io [%\/(tz— (2mL+x)2£):|

T
Xu I:t—(ZmL+x)\/<a):|
1 ) ,T
X [z— CmL+2L—x) \/ G)]} 4)

For convenience in the subsequent numerical analysis,
the following dimensionless quantities are introduced :

at
Fo=—

Iz (Fourier number) (25)
Ve = \/(Ifr) (Vernotte number) (26)
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X= -E (dimensionless coordinate). 27

The function H, given by equation (24), after sub-
stituting equations (25)—(27) takes the form

Fo
C2ve?
d 1
X mgo {10 <2V,e2\/(F02—(2m+X)2V€2))

x u[Fo—(2m+X) Vel

1
H(X, Fo) = ﬁexp (

+10<2,lezJ(Foz—(2m+2—X)2Ve2)>

X u[Fo—(2m+2—X) Ve]}. (28)
The dependence of temperature rise on time {Fourier
number) in the plane X = 1 is of great interest from
the experimental point of view. From equations (23)
and (24) we immediately obtain

Fo,

J. GEMBAROVIC and V.

f(Fo') I:H(l, Fo—Fo')—Ve

MAJERNIK
1 2 2 2
xu[Fo——(2m+l)Ve]—-exp<—

Fo—Fo,
2Ve?

x I (%ez\/[(Fo—Fol)z—(Zmﬁ-1)2Ve2]>

x u[Fo—Fo,—(2m+ l)Ve]} 32)

If Fo < Fo,, then in equation (23) Fo occurs instead
of Fo,, and the last term in equation (32) becomes
equal to zero.

RESULTS AND DISCUSSIONS

Numerical results displaying the development of
the temperature distribution arising from a pulsed
surface heat source at x = 0 on a slab with thickness
L are now presented.

Figure 1 shows the temperature distribution vs pos-

0H(1, Fo—Fo’)
Q VAR, FO— O ) ,
3Fo :|dF0

0
V(1, Fo) =

Fo,
0

where

’

at

FOI P

Fo' = 30)

ar,
=

Relation (29) represents the formula for the cal-
culation of the time course of the temperature rise at
x = L for the finite medium limited by the thermally
insulated planes x = 0 and L, where the heat flux with
the prescribed rate f(¢), (1€0,¢,)), occurs at the
plane x = 0.

In the special case of a rectangular pulse with dur-
ation Fo,, when

f(Fo) = u(Fo)—u(Fo—Fo) 3D

we obtain from equation (29) for Fo > Fo, the
expression

V(L. Fo) 2Ve Z { 1
,Foy=—— 5
Fo, =, Ve~
Fo, Fo—Fo’ I 1
x o Py~ 2Ve? 2\ 2ve?
><\/[(F0—Fo’)2-—(2m+l)zVez])dFo’

F
xu[Fo—(2m+l)Ve]+exp<— i%)

for Fo > Fo, 29

f(Fo')dFo’

ition after a rectangle pulse with duration Fo, = 0.01
at various times Fo, and for 1/Ve = 2. Here we note
that the series solution, utilized to compute the tem-
perature distributions

VeZ 1 Fo, , ,
V(X,F0)=}_,7 vg ) H(X,FO—FO)dFO
1

+[H(X, Fo)— H(X, Fo—Fol)]} (33)

where H(X, Fo) is given by equation (28), is in very
convenient form for the numerical convergence for a

10

11Ve =2
\ Foy= 0.5
> Fo=0.15
W
g
~ N,
0=0,4
& Fo=0.8
=z
[T0}
u g
0 N
0 05 1
POSITION X

FiG. 1. Temperature distribution vs position after a rectangle
pulse.



Non-Fourier propagation of heat pulses in finite medium

small value of time-—that is in contrast to the solution
of HHCE for the similar problems obtained by the
method of Fourier transformation [21, 25].

The dominant feature in this figure is that a surface
flux of heat gives rise to a thermal wave which travels
in the medium at a finite velocity, given by \/ (a/7).
The width of this wave AX depends on the pulse
duration Fo,, and the speed of propagation of heat
disturbance ~ 1/Ve, namely

AX_Fo1
T Ve’

(34)

The height of the discontinuity on the front side of
the wave AV, decays exponentially with time Fo, and
depends on both Fo, and Ve. It can be determined
from

Ve Fo
which can be easily evaluated from equation (33).

Similarly, we can find the peak of discontinuity on the
back side of the wave

Ve Fo—Fo,
AVb = };exp (-— W)

(36)

The wave front is dissipating its energy along its
path, and the time needed for its decay can be esti-
mated from equation (36) or equation (35).

The temperature discontinuities at the front and
back side of the wave are in this case determined
by the existence of discontinuities in the heat flux
distribution function on the surface as defined by con-
dition (31). The existence of a thermal wave front is
conditioned by the fact, that the expression in square
brackets in equation (33) is non-zero. This expression
represents the wave part of the solution. The integral
in equation (33) represents the dissipative part of the
solution.

The curve for Fo = 0.8 (Fig. 1) represents the dis-
tribution of temperature vs position in the slab after
the wave front has been reflected from the insulated
boundary surface at X = 1, and returned travelling in
the negative X-direction. A detailed discussion of this
process of reflection of the wave front at both surfaces
was given in ref. [21].

The effect of Vernotte number on temperature vs
time plot at X = | is demonstrated in Fig. 2. Here we
are observing the temperature responses on a rec-
tangle pulse on X = 0, with the duration Fo, = 0.05.
As we see from this analysis, curves for 1/Ve = 25
are practically identical with the parabolic one (for
1/Ve —» o), given by

2 o0 Fo 1

V(,Fo< Fo,)=—— -
. Fo o1) \/nFo,,.;) o /(Fo—Fo')

entn?
X €Xp [— m dFo
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FiG. 2. Effect of Vernotte number on temperature vs time
plotat X = 1.
2 0 Fo, 1
V(1,Fo> Fo,) = ——— —_—
: \/nFo,,,;, o/ (Fo—Fo')

2n+1)?

xexp[—m]dFo’ - (37)

The inequality 1/Ve = 25 represents the condition of
the occurrence of a difference in the temperature
responses given by the solution of HHCE, namely
relation (32), and the solution of the parabolic heat
conduction equation given by equations (37). From
the definition of Vernotte number (26) follows, that
this condition can also be written in the form

250 > r* (38)

where 1* is the time needed for appearance of the front
of the thermal wave in the plane X = 1.

The common value of Ve at room temperature and
for the typical solids (L~ 1072 m, 1~ 107" s,
a~ 107> m?s~ ') is of the order of 10~°. That means
that the effect of the finite velocity of propagation of
the thermal disturbance in the common materials with
typical dimensions of the samples does not appear.
However, at the low temperatures the values of a
and 1 increase, therefore at a certain value of L the
conditions can become favourable for the observation
of the temperature responses at the pulses which are
supposed by the solution of HHCE.

From the point of view of the analysis of propa-
gation of the thermal wave, presented when discussing
Fig. 1, it means that if 1/Ve = 25, then the thermal
wave front is damped so, that when it arrivesat X = 1,
it is negligibly small. The satisfaction of condition (38)
does not represent a guarantee that the temperature
inside the slab is given by the solution of the parabolic
heat conduction equation. For the values 1/Ve &~ 25
and for Fo < Vet is certainly not the case, especially
for the short pulses Fo, « Fo. Inside the slab the tem-
perature distribution vs position can be considerably
different from that, which is described by the solution
of the classical equation of heat conduction of the
parabolic type.

Similarly as in Fig. 1 we can find the formulas for
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FIG. 3. Comparison of the theoretically predicted tem-
perature response on the pulse and experimentally gained
curve.

the determination of the discontinuities in tem-
perature registered in the plane X = 1. The first
appearance of the front of the wave in this plane
occurs at the time Fo = Ve. For this discontinuity it
follows from equation (35) that

AV Ve < 1 )

- Fo,exp T 2Ve)

From equation (32) we can conclude that the second

discontinuity, which represents the first appearance of

the back side of the thermal wave front in the plane
X = 1, is given also by equation (39).

The heights of the next discontinuities (nth) are

given by

Ve
V=—-
A Fmexp(

(39)

2n—1

—m), n=1,2,3,... (40)

From formula (40) the phenomenological criterion
for the appearance of the second ‘jump’ in the tem-
perature vs time plot can be determined. This is com-
monly regarded as a second sound echo [2]. For exam-
ple, for Fo, = 107> and n = 2, we have from formula
(40), that AV > 107%if 1/Ve < 6.4.

The conditions on the existence of second sound in
dielectric solids, taken from the point of view of the
phonon transport mechanism, are developed in ref.
[29].

A comparison of our theoretically predicted tem-
perature response and those obtained experimentally
by Ackerman et al. [2] is presented in Fig. 3. Here we
take the value Fo, = 0.02, and for 1/Ve we choose the
value equal to 2, which are in the agreement with the
data reported in ref. [2]. Probably due to the finite
response time of the detector used, the experimental
curve obtained for solid helium differs from that, cal-
culated here. Nevertheless, as can be seen from Fig.
3, essential features of the experimental curve are sat-
isfactorily explained by our hyperbolic solution pre-
sented here.

The effect of the pulse duration Fo, is demonstrated
in Fig. 4, where the temperature field vs time at the
boundary plane X = 1 is shown. As follows from for-

J. GeMBAROVIC and V. MAJERNIK

1.5
1Ve=zo0o; Foq = 0.1 ——
> 1/Ve=10; Foy = 0,005 wseeree
o 20,025~
[T
)
oy
e | 2 20,075
o 0.5
P2
w
fos
0 R
o 01 0.2 0.3 04 05
TIME, Fo
FiG. 4. Effect of pulse duration on temperature vs time plot
at X = 1.

mula (40), increasing the pulse duration Fo, decreas-
ing the energy concentration in the peak, the height
of the wave front becomes smaller. We observe from
Fig. 4, that for Fo, > 0.075 the hyperbolic curves
loose their discontinuous character (for a given value
1/Ve), and they resemble more and more the curves
determined by the solution of the classical heat con-
duction equation.

If we use the possibility of the analytical description
of the integral occurring in equation (33) for X =0,
whereby we use the formula presented in ref. [28]

Jze“lo(t)dt=ze‘z[10(2)+1|(2)] (41)

0

then the temperature on the front side of the slab, for
early stages of the transient (for Fo < 2Ve), can be
expressed in the form

Ve Fo Fo
V{0, Fo) = Fﬁexp (— W){[(l + W)
I Fo + Fo 7 Fo (Fo)
o\avet ) T e \ave? ) [V

F —Fo

—exp (— 212;) I, (F02 7 ') u(Fo—Fo, )}. 42)
This relation describes the temperature of the surface
of a slab, suddenly exposed to an intensive laser pulse
of short duration, which is a problem of current inter-
est [30].

Unlike the relation for the surface temperature of
the slab, derived from the parabolic solution, which

starts at time instant Fo = 0 from zero and is rep-
resented by a continuous function

1
JrFo,

X expl —
ne140 P Fo—-Fo'} |./(Fo—Fo)

1
\/nFo,

V(0, Fo < Fo,) =

V(0, Fo > Fo,) =

i F”-[1+2 ( n* >] dFo’
X €X —
Zdo P\™ Fo—Fo') | J(Fo—Fo)

43
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our solution (42) starts from the value Ve/Fo,, and
that value has also the second discontinuous jump in
time Fo, (when Fo, < 2Ve), toward the lower tem-
perature. In time Fo = 2Ve the reflected thermal wave
front arrives at the front of the slab, and it is necessary
to add to equation (42) a further term which contains
the integral.

This above-mentioned double ternperature jump
can, in the vicinity of the exposed surface, give rise to
a considerable thermomechanical tension, and may
lead to the destruction of this surface. All the next
possible discontinuous jumps in temperature are
smaller in magnitude than the first two, therefore they
are, from the point of view of material destruction,
not important.

CONCLUSIONS

The Laplace transform method has been applied to
develop a solution of one-dimensional HHCE in an
insulated finite slab with a surface heat flux boundary
condition. The numerical analysis of given solutions
shows that in the slab moves a dumping thermal wave
which travels through the medium at a constant finite
speed, and is reflected by both boundary surfaces,
while dissipating its energy along its path.

We present the relations which describe the par-
ameters of this wave and its spatial and temporal
development for the rectangular pulsed surface heat
source. From the analysis of the transition area
between the hyperbolic and parabolic description of
the temperature responses on the pulses, determined
at X =1, it follows the condition for the onset of
non-Fourier effects, 1/Ve < 25, in the said arrange-
ment of the heat source, and the temperature detector.
The gained solutions are suitable from the point of
view of numerical convergence in early stages of the
transient. As an illustration of the said topic we pre-
sent an example for the calculation of the dependence
of temperature vs time in the front of a slab. From
the point of view of the occurrence of extremal ther-
motension in the material, the mentioned time interval
becomes critical.

The simple physical interpretation of the individual
terms in given solutions of HHCE makes it possible
to find the solutions to HHCE, with the same bound-
ary and initial conditions also for a semi-infinite
medium.
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PROPAGATION “NON FOURIERISTE” DES PULSATIONS DE CHALEUR DANS UN
MILIEU FINI

Résumé—On ¢étudie analytiquement les effets dans une couche finie de la conduction hyperbolique de la
chaleur. Les résultats pour des conditions de flux thermique pulsé a la surface sont comparés avec
ceux obtenus a partir de I’équation parabolique classique. Une analyse détaillée de la transition entre
comportement “parabolique” et “hyperbolique™ de la réponse en température a la pulsation montre que
pour L/,/(at) 2 25 les effets de la conduction non classique sont négligeables. Les solutions données ont
une interprétation physique claire, comme les ondes thermiques, ce qui rend possible I’écriture immédiate
des solutions pour un milieu semi-infini. Ces solutions en développement en série présentées ici conviennent
pour la convergence numérique et elles permettent de faire une analyse fouillée des premiers instants du
phénoméne dans le milieu, ce qui est trés important dans I’étude des contraintes thermiques.

AUSBREITUNG VON HEIZ-PULSEN IN EINEM ENDLICHEN MEDIUM: NICHT-
FOURIER-EFFEKTE

Zusammenfassung—In dieser Arbeit werden mit Hilfe eines hyperbolischen Wirmeleitungs-Modells auf
analytische Weise Nicht-Fourier-Effekte untersucht. Die Ergebnisse fiir pulsierende Warmestromdichte an
der Oberfliche werden mit denjenigen verglichen, welche mit Hilfe der iblichen parabolischen Standard-
Wirmeleitgleichung ermittelt wurden. Eine detaillierte Untersuchung des Ubergangs zwischen ‘‘para-
bolischem™ und “hyperbolischem™ Verhaiten der Temperatur-Antwort auf die pulsierende Wand-
Wirmestromdichte zeigt, daB fir L/\/(ar) 2 25 Nicht-Fourier-Effekte vernachldssigbar sind und die
Temperatur an beliebiger Stelle praktisch gleich derjenigen bei “parabolischer” Rechnung ist. Die an-
gegebenen Losungen lassen sich klar als wandernde thermische Wellen interpretieren, was es ermdglicht,
die Losungen fiir dieses Problem als halb unendlichen Korper anzugeben. Die gezeigten Reihenentwick-
lungen haben eine fiir numerische Konvergenz angenehme Form und ermoéglichen eine tiefgreifende
Untersuchung der Anfangsphase transienter Anderungen, was im Hinblick auf Wirmespannungen
sehr wichtig ist.

PACIIPOCTPAHEHME TEIJIOBbIX UMITYJILCOB B OTPAHWYEHHO! CPEJE, HE
MOAYMHAIOIWEECS 3AKOHY ®YPLE

Amnoramms—C NOMOIUBIO THOEPOOIHYECKOH MOJENH TEIUIONPOBOJHOCTH B OrPaHM4EHHOH ILTACTHHE
aHAJIATHYECKH MCCAenytoTCs pdexTsl, He MoOYMHmomMecs 3akoHy Pypbe. PesyjJbTaThl [Is MyJBCH-
PYIOLIEFO TEMJIOBOYO MOTOKA Ha MOBEPXHOCTH CPaBHHBAIOTCA C NAHHLIMH, NOJyYeHHBIMH M3 CTaHIapT-
HOTO MnapaboJIHYecKOro YpaBHEHMsl TEIUIONPOBOJHOCTH. [leTanbHBIA aHaNN3 NOKA3BIBAET, 4TO A
cnyuas L/\/(at) 2 25 oTxnoHenns oT 3akoHa ®yphe, MpeHEGPeXUMO Mabl, & TEMIEPATYPHBIA OTKIHUK B
ToYKe X = L Ha MMIIYJIbC, BOSHUKAIOLIMIA NpH x = 0, NpaKTHYECKA PaBeH NOJYYCHHOMY U3 mapabosuyec-
KOro ypasHenus. [{aHHbIe pellleHHs HMEIOT ACHYIO (H3HYECKYIO MHTEPNPETALMIO B BHIC JBHXYLIHXCH
TEMJIOBBIX BOJIH, JAIOUIyK) BO3MOXHOCTH 3allHCATh PEHIEHHE 3TOM 3aJa4d s NOJyor paHHYEHHOH
cpembl. Pemienns, npeacTaBieHHble B BUAC PANOB, YAOOHB [UIA YHCJICHHOTO CY€Ta M HO3BONAIOT Mpo-
BECTH METAJbHBIN aHANIK3 HAYAIBHON CTaJuH NEPEXOAHOTO MEPHOAA B CPEME, KOTOpask HrpacT BaXHYIO
POJib IPH MCCNEAOBAHAN TEPMHYECKHX HANPSIKCHUH.



